ГЛАВНАЯ Визы Виза в Грецию Виза в Грецию для россиян в 2016 году: нужна ли, как сделать

вероятность попадания нормально распределенной случайной величины (нрсв) в заданный интервал. Нормальный закон распределения

Найдем функцию распределения случайной величины Х , подчиненной нормальному закону распределения:

сделаем в интеграле замену и приведем его к виду:

.

Интеграл не выражается через элементарные функции, но его можно вычислить через специальную функцию, выражающую определенный интеграл от выражения или . Выразим функцию через функцию Лапласа Ф(х):

.

Вероятность попадания случайной величины Х на участок (α, β) выражается формулой:

.

С помощью последней формулы можно оценить вероятность отклонения нормальной случайной величины от своего математического ожидания на заранее заданную сколь угодно малую положительную величину ε:

.

Пусть , тогда и . При t =3 получим , т.е. событие, заключающееся в том, что отклонение нормально распределенной случайной величины от математического ожидания, будет меньше , является практически достоверным.

В этом состоит правило трех сигм : если случайная величина распределена нормально, то абсолютная величина отклонения ее значений от математического ожидания не превосходит утроенного среднего квадратического отклонения.

Задача. Пусть диаметр изготовляемой цехом детали является случайной величиной, распределенной нормально, m = 4,5 см, см. Найти вероятность того, что размер диаметра наудачу взятой детали отличается от ее математического ожидания не более, чем на 1 мм.

Решение . Данная задача характеризуется следующими значениями параметров, определяющих искомую вероятность: , , Ф(0,2)=0,0793,

Контрольные вопросы

1. Какое распределение вероятностей называется равномерным?

2. Какой вид имеет функция распределения случайной величины, равномерно распределенной на отрезке [а; b ]?

3. Как вычислить вероятность попадания значений равномерно распределенной случайной величины в заданный промежуток?

4. Как определяется показательное распределение случайной величины?

5. Какой вид имеет функция распределения случайной величины, распределенной по показательному закону?

6. Какое распределение вероятностей называется нормальным?

7. Какими свойствами обладает плотность нормального распределения? Как влияют параметры нормального распределения на вид графика плотности нормального распределения?

8. Как вычислить вероятность попадания значений нормально распределенной случайной величины в заданный промежуток?

9. Как вычислить вероятность отклонения значений нормально распределенной случайной величины от ее математического ожидания?

10. Сформулируйте правило «трех сигма»?

11. Чему равны математическое ожидание, дисперсия и среднее квадратическое отклонение случайной величины, распределенной по равномерному закону на отрезке [а; b ]?

12. Чему равны математическое ожидание, дисперсия и среднее квадратическое отклонение случайной величины, распределенной по показательному закону с параметром λ?

13. Чему равны математическое ожидание, дисперсия и среднее квадратическое отклонение случайной величины, распределенной по нормальному закону с параметрами m и ?

Контрольные задания

1. Случайная величина Х распределена равномерно на отрезке [−3, 5]. Найти плотность распределения и функцию распределения Х . Построить графики обеих функций. Найти вероятности и . Вычислить математическое ожидание, дисперсию и среднее квадратическое отклонение Х .

2. Автобусы маршрута №21 идут регулярно с интервалом 10 мин. Пассажир выходит на остановку в случайный момент времени. Рассматривается случайная величина Х − время ожидания пассажиром автобуса (в мин.). Найти плотность распределения и функцию распределения Х . Построить графики обеих функций. Найти вероятность того, что пассажиру придется ждать автобуса не более пяти минут. Найти среднее время ожидания автобуса и дисперсию времени ожидания автобуса.

3. Установлено, что время ремонта видеомагнитофона (в днях) есть случайная величина Х , распределенная по показательному закону. Среднее значение времени ремонта видеомагнитофона равно 10 дням. Найти плотность распределения и функцию распределения Х . Построить графики обеих функций. Найти вероятность того, что на ремонт видеомагнитофона потребуется не менее 11 дней.

4. Изобразите графики плотности и функции распределения случайной величины Х , распределенной по нормальному закону с параметрами m = = − 2 и = 0,2.

Где - интегральная функция Лапласа , задается таблично.

Из свойств определенного интеграла Ф(-х )= - Ф(х ), т.е. функция Ф(х ) – нечетная.

Отсюда выводятся следующие (производные) формулы:

Полагая: а) d=s

Правило трех сигм (3s): практически достоверно, что при однократном испытании, отклонение нормально распределенной случайной величины от ее математического ожидания не превышает утроенного средне-квадратического отклонения.

Задача : Предполагается, что масса вылавливаемых в пруду зеркальных карпов есть случайная величина Х , имеющая нормальное распределение с математическим ожиданием a =375 г. и средним квадратическим отклонением s = 25 г. Требуется определить:

А) Вероятность, что масса случайно выловленного карпа окажется не менее a=300 г. и не более b=425 г.

Б) Вероятность, что отклонение указанной массы от среднего значения (математического ожидания) по абсолютной величине будет меньше d= 40 г.

В) По правилу трех сигм найти минимальную и максимальную границы предполагаемой массы зеркальных карпов.

Решение :

А)

Вывод : Примерно 98% карпов, плавающих в пруду, имеют массу не менее 300 г. и не более 425 г.

Б)

Вывод : Примерно 89% имеют массу от a-d = 375- 40 = 335 г. до a +d = 375 + 40 = 415 г.

В) По правилу трех сигм:

Вывод : Масса практически всех карпов (примерно 100%) заключена в интервале от 300 до 450 грамм.

Задачи для самостоятельного решения

1. Стрелок поражает мишень с вероятностью 0,8. Какова вероятность, что при трех выстрелах мишень будет поражена ровно два раза? Хотя бы два раза?

2. В семье четверо детей. Принимая рождения мальчика и девочки как равновероятные события, оценить вероятность, что в семье две девочки. Три девочки и один мальчик. Составить закон распределения для случайной величины Х , соответствующей возможному количеству девочек в семье. Рассчитать характеристики: М (Х ), s.

3. Игральную кость подбрасывают три раза. Какова вероятность, что «6» выпадет один раз? Не более одного раза?

4. Случайная величина Х равномерно распределена на интервале . Какова вероятность попадания случайной величины Х на интервал ?



5. Предполагается, что рост людей (для определенности – взрослых, мужчин), проживающих в некоторой местности, подчиняется нормальному закону распределения с математическим ожиданием а =170 см и среднеквадратическим отклонением s=5 см. Какова вероятность, что рост случайно выбранного человека:

А) окажется не более 180 см и не менее 165 см?

Б) отклоняется от среднего по абсолютной величине не более чем на 10 см?

В) по правилу «трех сигм» оценить минимально и максимально возможный рост человека.

Контрольные вопросы

1. Как записывается формула Бернулли? Когда она применяется?

2. Что представляет собой биномиальный закон распределения?

3. Какая случайная величина называется равномерно распределенной?

4. Какой вид имеют интегральная и дифференциальная функции распределения для случайной величины, равномерно распределенной на отрезке [a , b ]?

5. Какая случайная величина имеет нормальный закон распределения?

6. Как выглядит кривая плотности нормального распределения?

7. Как найти вероятность попадания нормально распределенной случайной величины в заданный интервал?

8. Как формулируется правило «трех сигм»?

Введение в теорию случайных процессов

Случайной функцией называют функцию, значение которой при каждом значении независимой переменной является случайной величиной.

Случайным (или стохастическим) процессом называют случайную функцию, для которой независимой переменной является время t .

Иначе говоря, случайный процесс – это случайная величина, изменяющаяся во времени. Случайный процесс X (t ) на является определенной кривой, он является множеством или семейством определенных кривых x i (t) (i = 1, 2, …, n ), получаемых в результате отдельных опытов. Каждую кривую этого множества называют реализацией (или траекторией) случайного процесса.

Сечением случайного процесса называют случайную величину X (t 0), соответствующую значению случайного процесса в некоторый фиксированный момент времени t = t 0 .

Вероятность попадания в заданный интервал нормальной случайной величины

Уже известно, что если случайная величина X задана плотностью распределения f (х), то вероятность того, что X примет значение, принадлежащее интервалу (a,b), такова:

Пусть случайная величина X распределена по нормальному закону. Тогда вероятность того, что X примет значение, принадлежащее интервалу (a,b), равна

Преобразуем эту формулу так, чтобы можно было пользоваться готовыми таблицами. Введем новую переменную z = (x--а)/--s. Отсюда x = sz+a, dx = sdz . Найдем новые пределы интегрирования. Если х= a, то z=(a-a)/--s; если х = b , то z = (b-а)/--s.

Таким образом, имеем

Пользуясь функцией Лапласа

окончательно получим

Вычисление вероятности случайного события

В партии из 14 деталей имеются 2 нестандартные. Наугад отобраны 3 детали. Составить закон распределения случайной величины X - числа стандартных деталей среди отобранных. Найти числовые характеристики, . Решение Очевидно...

Исследование прочности на разрыв полосок ситца

Говорят...

Методы оценок неизвестных параметров распределения

Если случайная величина X задана плотностью распределения, то вероятность того, что X примет значение, принадлежащее интервалу, такова: Пусть случайная величина X распределена по нормальному закону. Тогда вероятность того, что X примет значение...

Непрерывная случайная величина

Функцией распределения вероятностей F(x) случайной величины Х в точке х называется вероятность того, что в результате опыта случайная величина примет значение, меньше, чем х, т.е. F(x)=P{X < х}. Рассмотрим свойства функции F(x). 1. F(-?)=lim(x>-?)F(x)=0...

Непрерывные случайные величины. Нормальный закон распределения

Зная плотность распределения, можно вычислить вероятность того, что непрерывная случайная величина примет значение, принадлежащее заданному интервалу. Вычисление основано на следующей теореме. Теорема. Вероятность того...

Конечное математическое ожидание mx=5 Среднее квадратическое отклонение уx=3 Размер выборки n=335 Доверительная вероятность г=0.95 Уровень значимости Количество выбираемых значений N=13 Моделирование случайной величины...

Статическое моделирование систем

Статическое моделирование систем

3. Оценка статистических характеристик случайного процесса Задачи определяются согласно разделам...

Статическое моделирование систем

Распределение: f(x)=b(3-x), b>0 Границы распределения 1

Статическое моделирование систем

Что такое случайная величина

случайный величина теория вероятность Рассмотренные выше правила распределения случайной величины являются справедливыми лишь по отношению к дискретным величинам, в силу того...

Элементы теории вероятностей

Рассмотрим важную с точки зрения практического применения задачу. Пусть имеется непрерывная случайная величина с плотностью распределения. Нас интересует задача нахождения плотности распределения величины, связанной с соотношением:...

Дисперсия нормальной случайной величины.

Дисперсия случайной величины есть математическое ожидание квадрата соответствующей центрированной случайной величины.

Она характеризует степень разброса значений случайной величины относительно ее математического ожидания, т.е. ширину диапазона значений.

Расчетные формулы:

Дисперсия может быть вычислена через второй начальный момент:

(6.10)

Дисперсия случайной величины характеризует степень рассеивания (разброса) значений случайной величины относительно ее математического ожидания. Дисперсия СВ (как дискретной, так и непрерывной) есть неслучайная (постоянная) величина.

Дисперсия СВ имеет размерность квадрата случайной величины. Для наглядности характеристики рассеивания пользуются величиной, размерность которой совпадает с размерностью СВ.

Средним квадратическим отклонением (СКО) СВ X называется характеристика

. (6.11)

СКО измеряется в тех же физических единицах, что и СВ, и характеризует ширину диапазона значений СВ.

Свойства дисперсии

Дисперсия постоянной величины с равна нулю.

Доказательство: по определению дисперсии

При прибавлении к случайной величине Х неслучайной величины с ее дисперсия не меняется.

D [X +c ] = D [X ].

Доказательство: по определению дисперсии

(6.12)

3. При умножении случайной величины Х на неслучайную величину с ее дисперсия умножается на с 2 .

Доказательство: по определению дисперсии

. (6.13)

Для среднего квадратичного отклонения это свойство имеет вид:

(6.14)

Действительно, при ½С½>1 величина сХ имеет возможные значения (по абсолютной величине), большие, чем величина Х. Следовательно, эти значения рассеяны вокруг математического ожидания М [сХ ] больше, чем возможные значения Х вокруг М [X ], т.е. . Если 0<½с½<1, то .

Правило 3s. Для большинства значений случайной величины абсолютная величина ее отклонения от математического ожидания не превосходит утроенного среднего квадратического отклонения, или, другими словами, практически все значения СВ находятся в интервале:

[ m - 3s ; m + 3 s; ].(6.15)

Вероятность попадания в заданный интервал нормальной случайной величины

Как уже было установлено, вероятность того, что непрерывная случайная величина примет значение, принадлежащее интервалу , равна определенному интегралу от плотности распределения, взятому в соответствующих пределах:
.
Для нормально распределенной случайной величины соответственно получим:
.
Преобразуем последнее выражение, введя новую переменную . Следовательно, показатель степени выражения, стоящего под интегралом преобразуется в:
.
Для замены переменной в определенном интеграле еще необходимо заменить дифференциал и пределы интегрирования, предварительно выразив переменную из формулы замены:
;
;
– нижний предел интегрирования;
– верхний предел интегрирования;
(для нахождения пределов интегрирования по новой переменной в формулу замены переменной были подставлены и – пределы интегрирования по старой переменной ).
Подставим все в последнюю из формул для нахождения вероятности:


где – функция Лапласа.
Вывод: вероятность того, что нормально распределенная случайная величина примет значение, принадлежащее интервалу , равна:
,
где – математическое ожидание, – среднее квадратическое отклонение данной случайной величины.

23. Распределения «хи-квадрат», Стьюдента и Фишера

С помощью нормального распределения определяются три распределения, которые в настоящее время часто используются при статистической обработке данных. В дальнейших разделах книги много раз встречаются эти распределения.

Распределение Пирсона (хи - квадрат) – распределение случайной величины

где случайные величины X 1 , X 2 ,…, X n независимы и имеют одно и тоже распределение N (0,1). При этом число слагаемых, т.е. n , называется «числом степеней свободы» распределения хи – квадрат.

Распределение хи-квадрат используют при оценивании дисперсии (с помощью доверительного интервала), при проверке гипотез согласия, однородности, независимости, прежде всего для качественных (категоризованных) переменных, принимающих конечное число значений, и во многих других задачах статистического анализа данных .

Распределение t Стьюдента – это распределение случайной величины

где случайные величины U и X независимы, U имеет распределение стандартное нормальное распределение N (0,1), а X – распределение хи – квадрат с n степенями свободы. При этом n называется «числом степеней свободы» распределения Стьюдента.

Распределение Стьюдента было введено в 1908 г. английским статистиком В. Госсетом, работавшем на фабрике, выпускающей пиво. Вероятностно-статистические методы использовались для принятия экономических и технических решений на этой фабрике, поэтому ее руководство запрещало В. Госсету публиковать научные статьи под своим именем. Таким способом охранялась коммерческая тайна, «ноу-хау» в виде вероятностно-статистических методов, разработанных В. Госсетом. Однако он имел возможность публиковаться под псевдонимом «Стьюдент». История Госсета - Стьюдента показывает, что еще сто лет назад менеджерам Великобритании была очевидна большая экономическая эффективность вероятностно-статистических методов.

В настоящее время распределение Стьюдента – одно из наиболее известных распределений среди используемых при анализе реальных данных. Его применяют при оценивании математического ожидания, прогнозного значения и других характеристик с помощью доверительных интервалов, по проверке гипотез о значениях математических ожиданий, коэффициентов регрессионной зависимости, гипотез однородности выборок и т.д. .