ГЛАВНАЯ Визы Виза в Грецию Виза в Грецию для россиян в 2016 году: нужна ли, как сделать

Процессоры. Процессоры Минимизация собственных усилий

Разработка в 60-х годах интегральных схем - целых устройств и узлов из десятков и сотен транзисторов, выполненных на одном кристалле полупроводника (то, что сейчас называют микросхемами) привело к созданию ЭВМ 3-го поколения. В это же время появляется полупроводниковая память, которая и по сей день используется в персональных компьютерах в качестве оперативной. Применение интегральных схем намного увеличило возможности ЭВМ. Теперь центральный процессор получил возможность параллельно работать и управлять многочисленными периферийными устройствами. ЭВМ могли одновременно обрабатывать несколько программ (принцип мультипрограммирования). В результате реализации принципа мультипрограммирования появилась возможность работы в режиме разделения времени в диалоговом режиме. Удаленные от ЭВМ пользователи получили возможность, независи-мо друг от друга, оперативно взаимодействовать с машиной.

В декабре 1961 года специальный комитет фирмы IBM, изучив техническую политику фирмы в области разработки вычислительной техники, представил план-отчёт создания ЭВМ на микроэлектронной основе. Во главе реализации плана встали два ведущих разработчика фирмы -- Д. Амдал и Г. Блау. Работая с проблемой производства логических схем, они предложили при создании семейства использовать гибридные интегральные схемы, для чего при фирме в 1963 году было открыто предприятие по их выпуску. В начале апреля 1964 года фирма IBM объявила о создании шести моделей своего семейства IBM-360 («System-360»), появление которого ознаменовало появление компьютеров третьего поколения.

За 6 лет существования семейства фирма IBM пустила более 33 тыс. машин. Затраты на научно-исследовательские работы составили примерно полмиллиарда долларов (по меркам того времени -- сумма была просто огромной).

При создании семейства «System-360» разработчики встретились с трудностями при создании операционной системы, которая должна была отвечать за эффективное размещение и использование ресурсов ЭВМ. Первая из них, универсальная операционная система называлась DOS, предназначенная для малых и средних ЭВМ, позже была выпущена операционная система OS/360 -- для больших. До конца 60-х гг. фирма IBM в общей сложности выпустила более 20 моделей семейства IBM-360. В модели 85 впервые в мире был применена кэш-память (от фр. cache -- тайник), а модель 195 стала первой ЭВМ на монолитных схемах.

В конце 1970 года фирма IBM стала выпускать новое семейство вычислительных машин -- IBM-370, которой сохранило свою совместимость с IBM-360, но и имело ряд изменений: они были удобны для комплектования многомашинных и многопроцессорных вычислительных систем, работающих на общем поле оперативной памяти.

Почти одновременно с IBM компьютеры третьего поколения стали выпускать и другие фирмы. В 1966--1967 гг. их выпускали фирмы Англии, ФРГ и Японии. В Англии фирмой ICL был основан выпуск семейства машин «System-4» (производительность от 15 до 300 тыс. оп/с). В ФРГ были выпущены машины серии 4004 фирмы Siemens (машины этого семейства полностью копировали ЭВМ семейства «Spectra-70»), а в Японии -- машины серии «Hytac-8000», разработанные фирмой Hitachi (это семейство являлось модификацией семейства «Spectra-70»). Другая японская фирма Fujitsu в 1968 году объявила о создании серии ЭВМ «FACOM-230».

В Голландии фирма Philips Gloeilampenfabriken, образованная в 1968 году для выпуска компьютеров, стала выпускать компьютеры серии P1000, сравнимой с IBM-360. В декабре 1969 года ряд стран (НРБ, ВНР, ГДР, ПНР, СССР и ЧССР, а также в 1972 году -- Куба, а в 1973 году -- СРР) подписали Соглашение о сотрудничестве в области вычислительных технологий.

На выставке «ЕСЭВМ-73» (1973 г.) были показаны первые результаты этого сотрудничества: шесть моделей компьютеров третьего поколения и несколько периферийных устройств, а также четыре ОС для них.

С 1975 года начался выпуск новых модернизированных моделей ЕС-1012, ЕС-1022, ЕС-1032, ЕС-1033, имеющих наилучшее соотношение производительность/стоимость, в которых использовались новые логические схемы и схемы полупроводниковой памяти.

Вскоре появились машины второй серии сотрудничества. Наиболее ярким представителем его была мощная модель ЕС-1065, представлявшая собой многопроцессорную системы, состоящую из четырех процессоров и имевшую память 16 Мбайт. Машина была выполнена на интегральных схемах ИС-500 и имела производительность 4--5 млн. оп/с.

С машинами третьего поколения связано ещё одно значительное событие -- разработка и внедрение визуальных устройств ввода-вывода алфавитно-цифровой и графической информации с помощью электронно-лучевых трубок -- дисплеев, использование которых позволило достаточно просто реализовать возможности вариантного анализа.

История появления первых прототипов современных дисплеев относится к послевоенным годам. В 1948 году Г. Фуллер, сотрудник лаборатории вычислительной техники Гарвардского университета, описал конструкцию нумероскопа. В этом приборе, под руководством ЭВМ, на экране электронно-лучевой трубки появлялась цифровая информация.

Дисплей принципиально изменил процесса ввода-вывода данных и упростил общение с компьютером.

В 70-ых гг. XX века благодаря появлению микропроцессоров стало возможным осуществлять буферизацию как данных, принимаемых с экранного терминала, так и данных, передаваемых ЭВМ. Благодаря чему регенерацию изображения на экране удалось реализовать средствами самого терминала. Появилась возможность редактирования и контроля данных перед их передачей в ЭВМ, что уменьшило число ошибок. На экране появился курсор -- подвижная метка, инициализирующая место ввода или редактирования символа. Экран дисплея стал цветным. Появилась возможность отображения на экране сложных графических изображений -- это дало возможность для создания красочных игр (хотя первые компьютерные игры появились ещё в 1950-е, но были псевдографическими) и предназначенных для работы с графикой программ.

В эти годы производство компьютеров приобретает промышленный размах. Пробившаяся в лидеры фирма IBM первой реализовала семейство ЭВМ - серию полностью совместимых друг с другом компьютеров от самых маленьких, размером с небольшой шкаф (меньше тогда еще не делали), до самых мощных и дорогих моделей. Наиболее распространенным в те годы было семейство System/360 фирмы IBM.

Начиная с ЭВМ 3-го поколения, традиционным стала разработка серийных ЭВМ. Хотя машины одной серии сильно отличались друг от друга по возможностям и производительности, они были информационно, программно и аппаратно совместимы. Например, странами СЭВ были выпущены ЭВМ единой серии («ЕС ЭВМ») «ЕС-1022», «ЕС-1030», «ЕС-1033», «ЕС-1046», «ЕС-1061», «ЕС-1066» и др. Производительность этих машин достигала от 500 тыс. до 2 млн. операций в секунду, объём оперативной памяти достигал от 8 Мб до 192 Мб. К ЭВМ этого поколения также относится «IВМ-370», «Электроника -- 100/25», «Электроника -- 79», «СМ-3», «СМ-4» и др.

Невысокое качество электронных комплектующих было слабым местом советских ЭВМ третьего поколения. Отсюда постоянное отставание от западных разработок по быстродействию, весу и габаритам, но, как настаивают разработчики СМ, не по функциональным возможностям. Для того, чтобы компенсировать это отставание, в разрабатывались спецпроцессоры, позволяющие строить высокопроизводительные системы для частных задач. Оснащенная спецпроцессором Фурье-преобразований СМ-4, например, использовалась для радиолокационного картографирования Венеры.

Еще в начале 60-х появляются первые миникомпьютеры - небольшие маломощные компьютеры, доступные по цене небольшим фирмам или лабораториям. Миникомпьютеры представляли собой первый шаг на пути к персональным компьютерам, пробные образцы которых были выпущены только в середине 70-х годов. Известное семейство миникомпьютеров PDP фирмы Digital Equipment послужило прототипом для советской серии машин СМ.

Между тем количество элементов и соединений между ними, умещающихся в одной микросхеме, постоянно росло, и в 70-е годы интегральные схемы содержали уже тысячи транзисторов. Это позволило объединить в единственной маленькой детальке большинство компонентов компьютера - что и сделала в 1971 г. фирма Intel, выпустив первый микропроцессор, который предназначался для только-только появившихся настольных калькуляторов.

В 1969 г. зародилась первая глобальная компьютерная сеть и одновременно появились операционная система Unix и язык программирования С ("Си"), оказавшие огромное влияние на программный мир и до сих пор сохраняющие свое передовое положение.

Третье поколение ЭВМ

Бурно развивающаяся авиация, космическая техника и другие области науки и техники требовали миниатюрных, надежных и быстрых вычислительных устройств. Поэтому дальнейшее развитие электронной вычислительной техники требовало разработки новой технологии, и такая технология не замедлила появиться. Новый прорыв в производительности, надежности и миниатюризации позволила сделать технология интегральных схем, ознаменовавшая собой переход на третье поколение ЭВМ, создаваемых с 1964 по 1974 г.г.

Использование интегральных схем позволило получить ряд преимуществ:

1. Увеличилась надежность ЭВМ. Надежность интегральных схем – на порядок выше надежности аналогичных схем на дискретных компонентах. Повышение надежности, в первую очередь, обусловлено уменьшением межсхемных соединений, являющихся одним из слабейших звеном в конструкции ЭВМ. Повышение надежности, в свою очередь, привело к значительному снижению стоимости эксплуатации ЭВМ.

2. За счет повышения плотности упаковки электронных схем, уменьшилось время передачи сигнала по проводникам и, как следствие, увеличилось быстродействие ЭВМ.

3. Производство интегральных схем хорошо поддается автоматизации, что при серийном производстве резко уменьшает себестоимость производства и способствует популяризации и расширению области применения ЭВМ.

4. Высокая плотность упаковки электронных схем уменьшила на несколько порядков габариты, массу и потребляемую мощность ЭВМ, что позволило использовать их в недоступных до этого областях науки и техники, таких как авиация и космическая техника.

Несмотря на явные преимущества использования технологии интегральных схем, на практике их массовое применение в ЭВМ началось спустя 12 лет, после разработки концепции интегральной схемы, опубликованной в 1952 году Джеффри Даммером из британского министерства обороны . Однако, Даммер только высказал идею о создании электронных элементов в виде единого блока при помощи полупроводниковых слоев из одного и того же материала, а как на практике в едином монолите разместить несколько элементов он не указал. В 1956 году Даммер пытался воплотить в реальность свои идеи, но разработанные устройства оказались неработоспособными.

На практике реализовать изложенные идеи удалось Джеку Килби из фирмы Texas Instruments и Роберту Нойсу из небольшой компании Fairchild Semiconductor.


В мае 1958 года Джек Килби устроился на работу в Texas Instruments, где он стал заниматься разработкой транзисторов, конденсаторов и резисторов (до этого он работал в Centralab и занимался производством слуховых аппаратов на базе транзисторов). Однажды команда, в которой работал Джек Килби, получила задание проработать варианты создания альтернативных микромодулей. Предлагались различные варианты, и Килби, обдумывая задачу, пришел к выводу, что компании выгоднее всего производить только полупроводниковые элементы, и что резисторы и конденсаторы можно сделать из того же материала, что и активные элементы, и разместить их в едином монолитном блоке из того же материала. Обдумывая эту идею, Джек прикинул топологию схемы мультивибратора. Так 24 июля 1958г. родилась идея практической реализации интегральной схемы.

Изложив свои идеи начальству, Джек получил задание создать опытный образец для доказательства состоятельности своих расчетов. Тогда была построена схема триггера из дискретных германиевых элементов. 28 августа 1958 года Джек Килби продемонстрировал макет Уиллису Эдкоку.

После одобрения начальства, Килби приступил к созданию настоящей монолитной интегральной микросхемы – генератора с фазовым сдвигом.

Параллельно с Джеком Килби разработкой интегральной микросхемы занимался Роберт Нойс. Роберту крайне не нравилась технология производства дискретных элементов. Он говорил, что довольно бессмысленным выглядит трудоемкий процесс нарезаний пластины кремния на отдельные элементы, а затем соединение их в единую схему. Нойс предложил изолировать отдельные транзисторы в кристалле друг от друга обратно смещенными p-n-переходами, а поверхность покрывать изолирующим окислом. Контакт между отдельными элементами осуществлялся через вытравленные в изолирующем окисле по специальному шаблону участки на поверхности микросхемы. Эти участки соединялись между собой тонкими линиями из алюминия.

Килби создал свою микросхему и подал заявку на патент чуть раньше Нойса, однако, технология Нойса была более продуманной и удобной, и документы на заявку подготовлены тщательнее. В результате, патент на изобретение Нойс получил раньше – в апреле 1961 года, а Килби – только в июне 1964 года.

Последовавшие за тем многочисленные судебные разбирательства и война за право считаться изобретателем технологии закончились миром. В конечном итоге, Апелляционный Суд подтвердил претензии Нойса на первенство в технологии, но постановил считать Килби создателем первой работающей микросхемы.

Серийный выпуск интегральных схем был налажен в 1961 году, тогда же была создана фирмой " Texas Instruments" по заказу ВВС США первая экспериментальная ЭВМ на интегральных схемах. Разработка велась 9 месяцев и была завершена в 1961г. ЭВМ имела всего 15 команд, была одноадресной, тактовая частота была 100 КГц, емкость запоминающего устройства – всего 30 чисел, для представления чисел использовалось 11 двоичных разрядов, потребляемая мощность составляла всего 16Вт, вес – 585гр, занимаемый объем – 100 кубических сантиметров.

Первые интегральные схемы были малой плотности, но со временем технология их производства отлаживалась, плотность возрастала. В ЭВМ третьего поколения использовались интегральные схемы малой и средней плотности, позволяющие в одном кристалле объединять сотни элементов. Такие микросхемы могли использоваться, как отдельные операционные схемы – регистры, дешифраторы, счетчики и т.д.

Появление интегральных схем позволило усовершенствовать структурную схему ЭВМ второго поколения. Так сильно связанные устройства управления (УУ) и арифметико-логическое устройство (АЛУ) были объедены в единый блок, который стал называться процессором. Причем, в процессоре могло быть несколько арифметико-логических устройств, каждое из которых выполняло свою функцию, например, одно АЛУ было ориентированно на работу с целыми числами, другое – с числами с плавающей точкой, а третье – с адресами. Также могло быть несколько устройств управления, одно – центральное, и несколько – периферийных, используемых для управления отдельными блоками ЭВМ.

Часто ЭВМ состояли из нескольких процессоров, что позволяло максимально полно использовать открывшиеся перспективы в параллельном решении задач.

В ЭВМ третьего поколение уже четко выделяется иерархия памяти. ОЗУ делится на независимые блоки с собственными системами управления, работающие параллельно. Структура оперативной памяти делится на страницы и сегменты. Развивается и внутренняя память процессора – создаются предпосылки к вводу кэширования памяти.

Внешние запоминающие устройства (ВЗУ) подключаются через специальный контроллер селекторного канала (КCК). Их емкость и скорость значительно возрастают. Так в июне 1973 года в качестве внешнего накопителя был выпущен жесткий диск IBM 3340.

Накопитель был герметичным – это защищало рабочие поверхности дисков от пыли и грязи, что позволяло размещать головки очень близко к магнитной поверхности диска. Впервые, был применен принцип аэродинамической магнитной головки, которая буквально парила над вращающейся поверхностью жесткого диска под действием аэродинамической силы.

Все это позволило значительно увеличить плотность записи (до 1.7 Мбит на квадратный дюйм) и увеличить емкость до 30 Мбайт (на несменном носителе). Также у накопителя имелся сменный носитель емкостью 30 Мбайт.

Наряду с совершенствованием логических устройств и памяти, полным ходом шла модернизация устройств ввода-вывода. Быстродействие новых ЭВМ требовало более быстрой и надежной системы ввода-вывода данных, чем устройства чтения перфокарт и телетайпы. На смену им пришли клавиатуры, панели графического ввода, дисплеи со световым карандашом, плазменные панели, растровые графические системы и другие устройства.

Большое разнообразие периферийных устройств, их сравнительно большое быстродействие, необходимость отделить операции ввода-вывода от вычислительного процесса привело к созданию специализированного контроллера мультиплексного канала (КМК), позволившего процессорам работать параллельно с вводом-выводом данных.

Обобщенная структурная схема ЭВМ третьего поколения, иллюстрирующая вышесказанное, изображена на схеме ниже.

На схеме:

УВВ – устройство ввода-вывода;
ОЗУ – одно или несколько оперативных запоминающих устройств;
АЛУ - одно или несколько арифметико-логических устройств;
УУ - одно или несколько устройств управления;
МК - контроллер мультиплексного канала (канала для подключения медленных устройств);
СК - контроллер селекторного канала (канала для подключения высокоскоростных устройств);
ВЗУ – внешнее запоминающее устройство.

Использование интегральных технологий значительно снизило стоимость ЭВМ, что незамедлительно привело к повышению спроса. Многие организации приобрели ЭВМ и успешно их эксплуатировали. Немаловажным фактором становится стремление к стандартизации и выпуску целых серий ЭВМ программно совместимых снизу вверх.

Возникает огромная потребность в прикладных программных продуктах, а так как рынок программного обеспечения еще не развит, и найти готовое, надежное и дешевое программное обеспечение практически невозможно, возникает гигантский рост популярности программирования и спроса на грамотных разработчиков программных продуктов. Каждое предприятие стремится организовать свой штат программистов, возникает специализированные коллективы, занимающиеся разработкой программного обеспечения и стремящиеся занять кусочек еще неосвоенной ниши на арене быстро растущей компьютерной технологии.

Рынок программного обеспечения быстро развивается, создаются пакеты программ для решения типовых задач, проблемно-ориентированные программные языки и целые программные комплексы для управления работой ЭВМ, которые впоследствии получат название – операционные системы.

Первые операционные системы начали появляться еще во времена ЭВМ второго поколения. Так в 1957 году компанией Bell Labs была разработана операционная система BESYS (Bell Operating System). А в 1962 году была разработана компанией General Electric операционная система GCOS (General Comprehensive Operating System), ориентированная для работы на Мейнфреймах. Но это все были только предпосылки к созданию, по-настоящему, популярных и востребованных операционных систем. К концу 1960-х годов уже был создан целый ряд операционных систем, реализующий множество необходимых функций по управлению ЭВМ. Всего эксплуатировалось более сотни различных ОС.

Среди наиболее развитых операционных систем были:

OS/360 , разработанная фирмой IBM в 1964 году для управления мейнфреймами;

MULTICS - одна из первых операционных систем с разделением времени исполнения программ;

UNIX , разработанная в 1969 году и, впоследствии, разросшаяся до целого семейства операционных систем, многие из которых являются одними из самых популярных на сегодняшний день.

Использование операционных систем упростило работу с ЭВМ и способствовало популяризации электронной вычислительной техники.

На фоне значительного роста интереса к электронной вычислительной техники в США, Европе, Японии и других странах, в СССР наблюдается спад прогресса в этой области науки. Так в 1969 году Советский Союз заключил соглашение о сотрудничестве в разработке Единой системы ЭВМ, за образец которой была взята одна из лучших на тот момент ЭВМ – IBM360. Ориентация СССР на зарубежные достижения в дальнейшем привела к значительному отставанию в области вычислительной техники.

Среди ЭВМ третьего поколения наиболее значимыми разработками были:

IBM System - 360 - целое семейство ЭВМ, выпуск которого начался с 1964 года. Все модели семейства имели единую систему команд и отличались друг от друга объемом оперативной памяти и производительностью, и были универсальными, способными решать, как сложные логические задачи, так и быть полезными в экономических расчетах. Универсальность ЭВМ отражена и в ее названии. 360 означает 360 градусов, т.е. ее возможность работать в любом из направлений. Затраты на разработку System-360 составили около 5 млрд. долларов США, что вдвое превышало расходы США во время второй мировой войны на Манхэттенский проект, целью которого было создание атомной бомбы. Проект по созданию IBM 360 уступал по стоимости только программе «Аполлон» . Архитектура IBM 360 оказалась чрезвычайно удачной и во многом определила направление развития вычислительной техники;

PDP8 – мини-ЭВМ, разработанная 22 марта 1965 года фирмой Digital Equipment Corporation (DEC). Термин «мини» – относительный. Эта ЭВМ была размером примерно с холодильник, но, по сравнению с другими представителями электронных вычислительных машин, размер её был действительно миниатюрным. Этот проект был коммерчески очень выгодным. Всего было продано около 50 000 экземпляров этой машины. Система PDP-8 имела массу аналогичных решений – клонов по всему миру. Так в СССР было разработано несколько аналогов этой ЭВМ: Электроника-100, Саратов-2 и др.;

Наири 3 – одна из первых самостоятельно разработанных в СССР ЭВМ третьего поколения. Эта разработка увидела свет в 1970 году в Ереванском научно-исследовательском институте математических машин. В ней использовался упрощенный машинный язык, призванный облегчить программирование. Также была возможность вводить некоторые задачи на математическом языке;

ЕС ЭВМ - единая система электронных вычислительных машин, за основу которой была взята удачная и хорошо себя зарекомендовавшая архитектура IBM System-360. Первые машины этой серии были созданы в СССР в 1971 году. Производительность первых образцов была от 2 750 операций в секунду (ЕС-1010) до 350 000 операций в секунду (ЕС-1040). Впоследствии, производительность удалось поднять до нескольких десятков миллионов операций в секунду, но, практически, все эти разработки были остановлены в 1990-х годах после распада СССР;

ILLIAC 4 – одна из самых производительных вычислительных машин третьего поколения. ILLIAC 4 была создана в 1972 году в Иллинойском университете и обладала конвейерной архитектурой, состоящей из 64 процессоров. ЭВМ предназначалась для решения системы уравнений в частных производных и обладала быстродействием, порядка 200 млн. операций в секунду.

Этот список можно продолжать и дальше, но и так ясно, что ЭВМ уже прочно и на долго вошли в нашу жизнь, и их дальнейшее развитие и совершенствование уже не остановить. С развитием технологии производства интегральных схем плотность компоновки элементов постепенно увеличивалась. Стали появляться сверх большие интегральные схемы, и ЭВМ третьего поколения, строящиеся на интегральных схемах малой и средней плотности, постепенно стали вытесняться ЭВМ четвертого поколения на больших и сверх больших интегральных схемах.

Список используемой литературы

1. История развития вычислительной техники. Ланина Э.П. ИрГТУ, Иркутск – 2001 г.

2. Развитие вычислительной техники. Апокин И.А. М., «Наука», 1974 г.

3. Технарский взгляд.

4. Методолог.

6. От абака до компьютера. Р. С. Гутер. Издательство «Знание», Москва 1981.

| IBM System/360

IBM System/360 (S/360) - семейство компьютеров класса мейнфреймов, которое было анонсировано 7 апреля 1964 года. Это был первый ряд компьютеров, в котором проводилось чёткое различие между архитектурой и реализацией.

S/360 совершила одну из первых революций на рынке «корпоративных вычислений». Данная модель не была первой, другие ЭВМ уже присутствовали на рынке, но именно героиня этой статьи перевернула представление про «компьютеры для бизнеса». S/360 во многом заложила подходы, ставшие основой современных компьютеров, как персональных, так и «больших», без которых мы бы не увидели всех чудес современного IT.


Первый вопрос, на который стоит ответить: почему именно IBM/360 стала переворотом для рынка? Отбросив разные причины, которых немало, стоит сразу назвать главную - правильный подход к архитектуре и конструкции позволил IBM сделать новую модель доступной (относительно, конечно). Именно это позволило умным машинам шагнуть из правительственных и университетских вычислительных центров в области бизнеса, и частный бизнес стал с радостью осваивать новый, невероятно удобный инструмент.

Что было нового в System/360?

Первой инновацией IBM, использующейся до сих пор, стал анонс целой линейки компьютеров, отличавшихся по цене, размеру и производительности, но использовавших общий набор команд (кроме нескольких моделей для специфичных рынков). Это позволяло компаниям приобрести модель попроще, а по мере роста потребностей, осуществить «апгрейд» железа, без необходимости переписывания уже отлаженного ПО.

Первый анонс обещал 6 моделей IBM/360 и 40 наименований периферии. Были анонсированы модели 30, 40, 50, 60, 62 и 70. Первые три должны были заменить «нижнюю» линейку IBM 1400 series и продавались до 1965 года. Старшие модели разрабатывались на замену IBM 7000 series, но в продажу так и не поступили, так как их заменили модели 65 и 75, вышедшие в конце 1965 и начале 1966 годов соответственно.


Со временем появилось много других интересных вариаций. Например, бюджетная 20 модель, обладавшая всего 4К базовой памяти, 8 16-битными регистрами (а не 16 32-битными как у остальных моделей) и уменьшенным набором инструкций. Еще одна бюджетная модель под номером 22, по сути была переработанной 30 моделью с более медленными портами ввода-вывода и ограничениями по объёму памяти.

Разумеется, развивались и небюджетные сегменты. Например, в model 67 IBM впервые реализовали технологию динамической трансляции адресов (DAT или dynamic address translation), которая сейчас известна нам под названием «виртуальная память». DAT в свою очередь позволила реализовать работу с разделением времени.


В моделях 65 и потом 67 была реализована поддержка двух процессоров , и на рынок поставлялись «двухъядерные» модификации этих систем.

В IBM System/360 впервые была применена технология «микрокода». В обычной архитектуре программа на языке высокого уровня транслируется в серию команд процессора, которые последний выполняет. Действия при выполнении команд реализованы аппаратно и изменяться не могут. В случае использования микрокода, именно он определяет, как будут выполняться те или иные команды, ставя в соответствие машинным командам «более низкоуровневые» атомарные операции. Изменяя микрокод, можно было изменять то, как выполняются машинные команды, что в свою очередь позволяло исправить какие-либо ошибки, что было невозможно при реализации машинных команд «в железе». В свою очередь, использование микрокода позволило усложнить набор машинных команд и предоставить больше возможностей разработчикам.

Недостатком подхода с микрокодом выступает более медленная работа компьютера, поэтому в старших моделях System/360 IBM использовали уже «аппаратную» реализацию, исключавшую микрокод.

Поскольку обратная совместимость была очень важна для клиентов IBM, уже инвестировавших огромные деньги в разработку ПО для их предыдущих компьютеров, в System/360 была поддержка эмуляции ЭВМ предыдущего поколения. Так, например, 30 модель могла эмулировать IBM 1400 system, а 65-я - IBM 7094. Для этого использовалась сложная комбинация аппаратного обеспечения, микрокодов и программы виртуализации, позволявшей старому коду работать в новой системе. В первых моделях для запуска программы в режиме виртуализации компьютер нужно было останавливать и запускать заново. Позже, в 85 модели и System/370, подобные программы уже могли быть запущены операционной системой и работать одновременно с «родными» приложениями.

За что еще мы должны быть благодарны System/360?

Девятидорожечная магнитная лента , ставшая практически стандартом хранения цифровой информации;
- кодовая таблица EBCDIC;
- 8-битные байты. Сейчас это может показаться удивительным, но во время разработки System/360 по финансовым причинам хотели ограничить байт 4 или 6 битами. Рассматривался еще вариант байтов с переменной длиной и битовой адресацией как в IBM 7030;
- байтовая адресация памяти;
- 32 битные слова;
- архитектура IBM для дробных чисел (фактически стандарт на протяжении 20 лет);
- шестнадцатеричные константы, использовавшиеся в документации System/360, вытеснили восьмеричные, использовавшиеся до этого.

Разумеется, на смену System/360 пришли следующие поколения компьютеров. System/370, System/390 и System z. Многие другие компании строили свои ЭВМ на основе архитектуры System/360. Среди них


Когда речь идёт о мейнфреймах, многие люди в первую очередь представляют семейство компьютеров System/360 от компании IBM - можно сказать, что это самая важная компьютерная архитектура за всю историю. Во многих отношениях семейство IBM System/360 похоже на процессоры 8086 в том смысле, что оно установило стандарт и породило длинную череду потомков, которые живы и преуспевают по сей день. Единственное большое отличие: IBM изначально нацеливалась на успех линейки System/360, в отличие от процессоров 8086, которые приобрели такую большую важность, о которой производитель даже не думал. Многим из вас, наверняка, известно, что Intel даже пыталась "похоронить" набор инструкций x86 с процессорами Itanium.

Итак, вернёмся к мейнфреймам. До System/360 в ассортименте компании IBM был беспорядок: многие системы были несовместимы друг с другом. Не только пользователям было трудно делать апгрейд, но и самой IBM с точки зрения логистики было очень тяжело поддерживать все эти разные операционные системы на разном аппаратном обеспечении. Поэтому IBM решила создать то, что мы сейчас воспринимаем как само собой разумеющееся: совместимую линейку компьютеров с разной производительностью и ёмкостью, которые при этом способны работать с одними и теми же программами. В апреле 1964 года IBM анонсировала шесть компьютеров в линейке, отличавшихся своей производительностью, причём производительность high-end модели по сравнению с low-end моделью была в 50 раз выше. На самом деле, эта цифра вдвое превышала ожидания IBM (компания рассчитывала на увеличение производительности в 25 раз, что само по себе ставило перед IBM много проблем). Даже знаменитый Джин Амдал (Gene Amdahl) считал невозможным улучшение этого значения. Нельзя было просто создать что-то в 25 раз больше, чем самый маленький элемент, нужно было строить всё заново.

Сегодня отключение части процессора или уменьшение его тактовой частоты для некоторого снижения производительности является нормой. Но в те времена было экономически неоправданно создавать high-end процессор и искусственно снижать его производительность в целях маркетинга. Поэтому IBM решила в System/360 применить идею "микропрограммирования", чтобы все члены семейства использовали один и тот же набор команд (за исключением самой low-end модели Model 20, которая могла выполнять подмножество этих команд). Эти команды затем разбивались на ряд "микроопераций", специфичных для данной реализации системы. Таким образом, процессор мог быть очень разным, что позволило повысить показатель, на который рассчитывала IBM, и, как уже говорилось, даже увеличить его в два раза.

Что-то подобное было реализовано в процессорах x86 после Pentium Pro (или даже NexGen Nx586). Впрочем, как уже отмечалось, IBM всё заранее спланировала. Разработчики x86 пошли на это потому, что набор команд процессора был настолько плох, что не мог выполняться эффективно. У микропрограммирования было одно очень важное преимущество, которое нельзя было легко осуществить в микропроцессоре. Благодаря созданию новых микропрограммируемых модулей, System/360 стал совместим с популярным мейнфреймом 1401 в low-end сегменте и даже с 7070 и 7090 в high-end сегменте. Поскольку это было реализовано в аппаратной части, то это было гораздо быстрее, чем любая программная эмуляция, и в общем случае старые приложения работали быстрее на System/360, чем на "родной" системе из-за технологических продвижений.

Некоторые нововведения System/360 используются и сейчас. Во-первых, в системе System/360 был стандартизирован байт как равный восьми битам, и использовалась длина слова в 32 бита, что помогло упростить архитектуру, поскольку оба были степенями двойки. Все компьютеры, кроме самой low-end модели Model 20, имели 16 регистров общего назначения (как и x86-64), тогда как большинство предшественников использовали регистр-аккумулятор, возможно, индексный регистр и другие регистры специальных функций. System/360 мог работать аж с 16 Мбайт памяти, хотя в то время такой объём памяти был недоступен. Самый high-end процессор мог работать на очень приличной тактовой частоте 5 МГц (кстати, на такой частоте работал процессор 8086, когда он был объявлен на 14 лет позже), тогда как low-end процессоры работали на частоте 1 МГц. Модели, появившиеся позднее, в 1966 году, тоже имели конвейерные процессоры.

Хотя система System/360 открыла много нового, она не использовала некоторые важные технологии. Больше всего не хватало динамической трансляции адресов (которая появилась в более поздней модели 67). Это не только не давало возможности реализовать виртуальную память, но и делало машину непригодной для нормального разделения времени, которое становилось возможным, благодаря растущей производительности и ресурсам компьютеров. Кроме того, IBM оставила в стороне интегральную микросхему, а вместо неё использовала технологию изготовления толстоплёночных логических интегральных схем, которая, грубо говоря, находилась где-то между интегральной микросхемой и простыми транзисторами. Что касается программного обеспечения, у IBM было слишком много амбиций насчёт OS/360 (одна из операционных систем, разработанных для System/360). Она вышла поздно, использовала много памяти, не имела некоторых обещанных функций и содержала множество ошибок, которые потом ещё долго оставались неисправленными. OS/360 можно назвать ярким примером провала, хотя IBM в итоге всё же исправила свою операционную систему, которая впоследствии дала очень важных потомков.

Несмотря на все эти проблемы, компьютер System/360 был принят "на ура": в первый же месяц было заказано более 1 100 экземпляров, что значительно превысило ожидания и возможности самой IBM. Система долго оставалась успешной, и у неё появился целый рынок "клонов". Клоны производились и в Советском Союзе. Линейка System/360 должна была быть очень гибкой и легко адаптируемой, область её применения была самой разнообразной (одно только программа Аполлон чего стоит!).

Важнее всего то, что система System/360 дала начало линейке, которая на протяжении 50 лет составляла основу рынка вычислительной техники, и является одной из самых важных с коммерческой точки зрения архитектур в истории компьютеров.


В то время как IBM занималась разработкой целого ряда совместимых систем в линейке System/360, компания под названием CDC сосредоточилась на другом: на создании по-настоящему быстрого компьютера.

Не обременённый никакими другими заботами, как то совместимость и стоимость, Сеймур Крей (Seymour Cray) мог свободно применить весь свой талант, сфокусировавшись только на скорости. И он преуспел в этом направлении: машина стоимостью около 7 млн. долларов была самой быстрой в период с 1964 по 1969 год, благодаря использованию уникальной архитектуры, основанной на, как бы мы сейчас сказали, асимметричном многопроцессорном дизайне.

Главный процессор работал на невероятно высокой тактовой частоте 10 МГц, но был существенно ограничен в командах, которые он мог выполнять, поскольку это был самый настоящий процессор с сокращённым набором команд (RISC), хотя такого термина тогда ещё не было. Он мог выполнять только очень простые арифметико-логические функции, однако его дополняли 10 логических периферийных процессоров, которые могли делать то, на что не был способен главный CPU, и снабжали его данными, освобождая при этом от обработанных данных. Возможность сделать процессор более специализированным и параллелизм за счёт использования десяти дополнительных процессоров способствовали исключительной производительности машины. Обладая огромным объёмом памяти (128 тысяч слов), этот 60-битный компьютер мог работать с исполняемыми файлами меньшего размера для дополнительной производительности, что для простого набора инструкций было невозможно.

Несмотря на то, что CDC 6600 был прибыльным компьютером, он никогда не покушался на долю рынка, принадлежащую System/360. Как показывает опыт, иногда лучше не конкурировать с IBM там, где она властвует, а попробовать себя в других сферах. Так, например, мейнфрейм CDC 6600 нацелился на ту часть рынка, до которой было не достать даже System/360 Model 75, а компьютер, который мы рассмотрим ниже, занял часть рынка, не принадлежащую System/360 Model 20.

DEC PDP-8

Нажмите на картинку для увеличения.

Пока IBM занималась своей внушительной линейкой System/360, компания Digital Equipment Corp. (DEC) готовилась к выпуску компьютера, который тоже окажет значительное влияние на будущее вычислительных систем: PDP-8. Хотя разные компьютеры в линейке System/360 обладали огромным диапазоном производительности и ёмкости, они всё же оставались мейнфреймами, и даже самые low-end модели для многих организаций были не по карману. Основатель компании DEC, Кен Олсен (Ken Olsen) не оставил этот факт без внимания.

Компания DEC начала выпускать компьютеры уже с 1960 года, однако эти модели имели весьма скромный успех и мало повлияли на компьютерную индустрию. Тем не менее, постоянное развитие технологий, главным образом интегральных микросхем, позволило DEC выпустить гораздо более компактный и менее дорогой компьютер, по сравнению с предшествующими мейнфреймами. Интегральные микросхемы позволили значительно снизить энергопотребление и, как следствие, тепловыделение. Это избавило от необходимости оборудовать специальные помещения с кондиционированием воздуха. Когда в 1965 году был выпущен первый PDP-8, он стоил удивительно дёшево - $18 000, что вместе с вышеупомянутыми преимуществами сделало компьютеры доступными для многих компаний, которые раньше считали их приобретение непозволительно дорогим.

Уникальной функцией PDP-1, первого продукта DEC, было использование настоящего прямого доступа к памяти (direct memory access, DMA), который был гораздо дешевле и проще, нежели каналы, используемые мейнфреймами, и сильно не отнимал производительность процессора. Надо сказать, что один канал памяти мейнфрейма стоил дороже, чем весь PDP-1. Прямой доступ к памяти стал использоваться во всех последующих компьютерах DEC, включая PDP-8. Впрочем, не все функции PDP-8, снижающие стоимость, оказались настолько благоприятными. Длина слова в 12 бит значительно ограничила количество непосредственно адресуемой памяти, при этом только 7 бит слова использовались для адресации, позволяя адресовать напрямую только 128 байт. Эту проблему можно было решить, например, путём использования косвенной адресации, при которой 7 бит указывали на область памяти, содержащую фактический адрес, к которому требуется получить доступ. Такой доступ был значительно медленнее, но позволял использовать все 12 бит. Другой способ заключался в делении памяти на сегменты по 128 байт, после чего сегменты можно менять по мере необходимости (и некоторым пользователям после этого не нравятся 64-кбайт сегменты 16-битных процессоров x86). Ни одно из этих решений не было желательным, они сильно ограничивали функциональность PDP-8 с языками высокого уровня. PDP-8 не был монстром скорости и мог выполнять всего 35 000 операций сложения в секунду.

Несмотря на наличие всех этих компромиссов, PDP-8 имел удивительный успех: пока DEC не прекратила производство этих машин, было продано свыше 50 000 экземпляров. Низкая стоимость самого компьютера, низкие затраты на его эксплуатацию и лёгкость установки перекрывали все недостатки PDP-8. Фактически, эта скромная машина породила совершенно новый тип компьютера под названием "миникомпьютер", который за два десятка лет приобрёл огромную популярность и сделал DEC второй самой крупной компьютерной компанией в мире. Пожалуй, жаль, что миникомпьютеры не устояли перед натиском микрокомпьютеров и сейчас являются исчезнувшим видом, заслуживая название "динозавры" больше, чем мейнфреймы. Мейнфреймы всё ещё занимают вершину цепи, и способны решать задачи, непосильные для настольных компьютеров.


Хотя система System/360 имела большой успех и в некотором отношении была революционной и инновационной, она избегала передовых технологий, дав возможность другим компаниям развивать их. Впрочем, надо отдать ей должное: System/360 хорошо продавалась даже спустя шесть лет после того, как система была анонсирована, и заложила фундамент для последующих поколений, первым из которых был System/370.

Первый выпуск System/370 состоялся в 1970 году и включал в себя всего две машины, названные 155 (на частоте почти 8,70 МГц) и 165 (с частотой 12,5 МГц). Как и следовало ожидать, обе машины были совместимы с программами, написанными для систем System/360, и могли даже использовать те же самые периферийные устройства. Кроме того, была существенно улучшена производительность: System/370 165 работала в пять раз быстрее, чем System/360 65, самая скоростная машина из этой линейки, выпущенная в ноябре 1965 года.

По сравнению с System/360, линейка System/370 обладала рядом новых технологий. IBM наконец-то перешла на использование интегральных микросхем, что уже давно пора было сделать. Большинство моделей в линейке имели память на транзисторах, вместо памяти на магнитных сердечниках. Кроме того, System/370 стала поддерживать динамическую трансляцию адресов (на всех моделях, кроме первых двух) - это была важная технология для разделения времени и виртуальной памяти. Появился также высокоскоростной кэш (80 нс у модели 165), который IBM назвала буфером. Он использовался процессором, чтобы уменьшить относительно длительное (2 мкс, или 2 000 нс) время доступа основной памяти. Ещё одним важным решением было то, что System/370 изначально была построена с учётом двух процессоров и мультипрограммирования.

В конце 70-х годов в стране был накоплен достаточный опыт по производству ЭВМ. В этот момент делается решительный шаг от многообразия к унификации, от моделей с различными принципами организации к серии машин единой архитектуры разной

производительности. В качестве образца такой единой серии выбирается архитектура мэйнфреймов IBM 360. Этот поворотный момент в истории советской вычислительной техники трактуется по- разному, в том числе, как начало ее конца.

Создание IBM-подобных компьютеров происходило, по сути, без возможности легального доступа к первоисточникам. Можно только предположить, насколько плодотворным было бы открытое сотрудничество ученых двух стран. Однако тогда машины воспроизводились, во многом, на основании лишь примерных сведений об их прототипах, так что нашим разработчикам все же оставался большой простор для творчества. Создатели ЕС и СМ настаивают на том, что эти машины являются оригинальными разработками, ориентированными на отечественную промышленность.

Накопители на магнитных лентах для машин серии ЕС ЭВМ. Накопители на магнитных лентах использовались и раньше (на БЭСМ-6).

Накопители на

магнитных дисках

Впервые в СССР

появились у ЭВМ Единой Серии

(начало 70-х годов). Первые такие диски имели емкость порядка нескольких Мбайт. Высота устройства примерно 1 метр.

Автоматическое цифровое печатающее устройство (АЦПУ) для ЭС ЭВМ. Печатала только символьную информацию и никаких вам графиков.

Тем, кто с ним работал, никогда не забыть его стрекочущий звук.

Первый

микрокалькулятор

1972 год. Hewlett-Packard анонсирует калькулятор HP-3 как «быструю, супер-точную электронную логарифмическую линейку», с памятью на полупроводниках типа компьютерной. HP-3 отличался от подобных устройств способностью оперировать с щироким спектром логарифмических и тригонометрических функций, запоминать больше промежуточных значений для дальнейшего использования и воспринимать и отображать данные в стандартной инженерной форме.

Генеалогическое древо ЭВМ, созданных в ИТМ и ВТ, Москва, под руководством С.А. Лебедева

Четвертое поколение ЭВМ

Элементная база – большие и сверхбольшие интегральные схемы (БИС и СБИС).